MakeItFrom.com
Menu (ESC)

H02 C14300 Copper vs. H02 C41500 Brass

Both H02 C14300 copper and H02 C41500 brass are copper alloys. Both are furnished in the H02 (half hard) temper. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is H02 C14300 copper and the bottom bar is H02 C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 14
16
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Shear Strength, MPa 190
280
Tensile Strength: Ultimate (UTS), MPa 310
390
Tensile Strength: Yield (Proof), MPa 280
380

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1050
1010
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 380
120
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 96
28
Electrical Conductivity: Equal Weight (Specific), % IACS 96
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
45
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42
62
Resilience: Unit (Modulus of Resilience), kJ/m3 330
660
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.6
12
Strength to Weight: Bending, points 11
13
Thermal Diffusivity, mm2/s 110
37
Thermal Shock Resistance, points 11
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Cadmium (Cd), % 0.050 to 0.15
0
Copper (Cu), % 99.9 to 99.95
89 to 93
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5