MakeItFrom.com
Menu (ESC)

H02 C14300 Copper vs. H02 C52400 Bronze

Both H02 C14300 copper and H02 C52400 bronze are copper alloys. Both are furnished in the H02 (half hard) temper. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is H02 C14300 copper and the bottom bar is H02 C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 14
32
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Shear Strength, MPa 190
380
Tensile Strength: Ultimate (UTS), MPa 310
580
Tensile Strength: Yield (Proof), MPa 280
420

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1050
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 380
50
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 96
11
Electrical Conductivity: Equal Weight (Specific), % IACS 96
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 41
58
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42
170
Resilience: Unit (Modulus of Resilience), kJ/m3 330
800
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.6
18
Strength to Weight: Bending, points 11
18
Thermal Diffusivity, mm2/s 110
15
Thermal Shock Resistance, points 11
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Cadmium (Cd), % 0.050 to 0.15
0
Copper (Cu), % 99.9 to 99.95
87.8 to 91
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5