MakeItFrom.com
Menu (ESC)

R31538 Cobalt vs. AWS ERNiFeCr-2

R31538 cobalt belongs to the cobalt alloys classification, while AWS ERNiFeCr-2 belongs to the nickel alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is R31538 cobalt and the bottom bar is AWS ERNiFeCr-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 13 to 23
28
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 86
75
Tensile Strength: Ultimate (UTS), MPa 1020 to 1360
1300

Thermal Properties

Latent Heat of Fusion, J/g 320
310
Melting Completion (Liquidus), °C 1360
1460
Melting Onset (Solidus), °C 1290
1410
Specific Heat Capacity, J/kg-K 450
450
Thermal Conductivity, W/m-K 13
12
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
1.5

Otherwise Unclassified Properties

Density, g/cm3 8.4
8.3
Embodied Carbon, kg CO2/kg material 8.1
13
Embodied Energy, MJ/kg 110
190
Embodied Water, L/kg 530
250

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 34 to 45
43
Strength to Weight: Bending, points 27 to 32
32
Thermal Diffusivity, mm2/s 3.5
3.2
Thermal Shock Resistance, points 25 to 33
38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0
0 to 0.0030
Carbon (C), % 0.15 to 0.35
0 to 0.080
Chromium (Cr), % 26 to 30
17 to 21
Cobalt (Co), % 58.7 to 68.9
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 0 to 0.75
11.6 to 24.6
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 5.0 to 7.0
2.8 to 3.3
Nickel (Ni), % 0 to 1.0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2
Residuals, % 0
0 to 0.5