MakeItFrom.com
Menu (ESC)

Hot Finished N08800 Stainless Steel vs. EN 1.0456 +U Steel

Both hot finished N08800 stainless steel and EN 1.0456 +U steel are iron alloys. Both are furnished in the hot worked condition. They have 47% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is hot finished N08800 stainless steel and the bottom bar is EN 1.0456 +U steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
26
Fatigue Strength, MPa 150
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 340
270
Tensile Strength: Ultimate (UTS), MPa 500
420
Tensile Strength: Yield (Proof), MPa 190
300

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
48
Thermal Expansion, µm/m-K 14
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.2
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.5
Embodied Energy, MJ/kg 76
20
Embodied Water, L/kg 200
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
99
Resilience: Unit (Modulus of Resilience), kJ/m3 96
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 3.0
13
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0.020 to 0.060
Carbon (C), % 0 to 0.1
0 to 0.2
Chromium (Cr), % 19 to 23
0 to 0.3
Copper (Cu), % 0 to 0.75
0 to 0.35
Iron (Fe), % 39.5 to 50.7
96.7 to 99.48
Manganese (Mn), % 0 to 1.5
0.5 to 1.4
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 30 to 35
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.15 to 0.6
0 to 0.030
Vanadium (V), % 0
0 to 0.050