MakeItFrom.com
Menu (ESC)

Hot Rolled SAE-AISI 1021 vs. Hot Worked Nickel 690

Hot rolled SAE-AISI 1021 belongs to the iron alloys classification, while hot worked nickel 690 belongs to the nickel alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is hot rolled SAE-AISI 1021 and the bottom bar is hot worked nickel 690.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
90
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
28
Fatigue Strength, MPa 190
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 310
430
Tensile Strength: Ultimate (UTS), MPa 480
660
Tensile Strength: Yield (Proof), MPa 260
270

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
1010
Melting Completion (Liquidus), °C 1460
1380
Melting Onset (Solidus), °C 1420
1340
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
14
Thermal Expansion, µm/m-K 12
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
50
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.4
8.2
Embodied Energy, MJ/kg 18
120
Embodied Water, L/kg 46
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 14
3.5
Thermal Shock Resistance, points 15
17

Alloy Composition

Carbon (C), % 0.18 to 0.23
0 to 0.050
Chromium (Cr), % 0
27 to 31
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 98.8 to 99.22
7.0 to 11
Manganese (Mn), % 0.6 to 0.9
0 to 0.5
Nickel (Ni), % 0
58 to 66
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.015