MakeItFrom.com
Menu (ESC)

Hot Rolled SAE-AISI 1039 vs. Hot Rolled SAE-AISI 1144

Both hot rolled SAE-AISI 1039 and hot rolled SAE-AISI 1144 are iron alloys. Both are furnished in the hot worked condition. Their average alloy composition is basically identical.

For each property being compared, the top bar is hot rolled SAE-AISI 1039 and the bottom bar is hot rolled SAE-AISI 1144.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
17
Fatigue Strength, MPa 230
280
Poisson's Ratio 0.29
0.29
Reduction in Area, % 45
40
Shear Modulus, GPa 73
72
Shear Strength, MPa 380
460
Tensile Strength: Ultimate (UTS), MPa 610
750
Tensile Strength: Yield (Proof), MPa 340
420

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
51
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 46
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
110
Resilience: Unit (Modulus of Resilience), kJ/m3 310
480
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
27
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 19
22

Alloy Composition

Carbon (C), % 0.37 to 0.44
0.4 to 0.48
Iron (Fe), % 98.5 to 98.9
97.5 to 98
Manganese (Mn), % 0.7 to 1.0
1.4 to 1.7
Phosphorus (P), % 0 to 0.040
0 to 0.040
Sulfur (S), % 0 to 0.050
0.24 to 0.33