MakeItFrom.com
Menu (ESC)

ISO-WD32350 Magnesium vs. 1050 Aluminum

ISO-WD32350 magnesium belongs to the magnesium alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ISO-WD32350 magnesium and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
68
Elongation at Break, % 5.7 to 10
4.6 to 37
Fatigue Strength, MPa 120 to 130
31 to 57
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 150 to 170
52 to 81
Tensile Strength: Ultimate (UTS), MPa 250 to 290
76 to 140
Tensile Strength: Yield (Proof), MPa 140 to 180
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 95
170
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 560
650
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 130
230
Thermal Expansion, µm/m-K 25
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
61
Electrical Conductivity: Equal Weight (Specific), % IACS 130
200

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 23
8.3
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 960
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 23
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
4.6 to 110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 68
50
Strength to Weight: Axial, points 39 to 46
7.8 to 14
Strength to Weight: Bending, points 50 to 55
15 to 22
Thermal Diffusivity, mm2/s 73
94
Thermal Shock Resistance, points 16 to 18
3.4 to 6.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
99.5 to 100
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.060
0 to 0.4
Magnesium (Mg), % 95.7 to 97.7
0 to 0.050
Manganese (Mn), % 0.6 to 1.3
0 to 0.050
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.1
0 to 0.25
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 1.8 to 2.3
0 to 0.050
Residuals, % 0 to 0.3
0

Comparable Variants