MakeItFrom.com
Menu (ESC)

Nickel 242 vs. C19200 Copper

Nickel 242 belongs to the nickel alloys classification, while C19200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 242 and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 45
2.0 to 35
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 84
44
Shear Strength, MPa 570
190 to 300
Tensile Strength: Ultimate (UTS), MPa 820
280 to 530
Tensile Strength: Yield (Proof), MPa 350
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 930
200
Melting Completion (Liquidus), °C 1380
1080
Melting Onset (Solidus), °C 1290
1080
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 11
240
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 75
30
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 14
2.6
Embodied Energy, MJ/kg 180
41
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 280
42 to 1120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 25
8.8 to 17
Strength to Weight: Bending, points 21
11 to 16
Thermal Diffusivity, mm2/s 3.1
69
Thermal Shock Resistance, points 25
10 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 7.0 to 9.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
98.5 to 99.19
Iron (Fe), % 0 to 2.0
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 0.8
0
Molybdenum (Mo), % 24 to 26
0
Nickel (Ni), % 59.3 to 69
0
Phosphorus (P), % 0 to 0.030
0.010 to 0.040
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2