MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 3303 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 3303 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 3303 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
23
Fatigue Strength, MPa 200
43
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 440
69
Tensile Strength: Ultimate (UTS), MPa 660
110
Tensile Strength: Yield (Proof), MPa 270
39

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1020
180
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1430
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
43
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.4
8.1
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
20
Resilience: Unit (Modulus of Resilience), kJ/m3 180
11
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 22
11
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 2.7
67
Thermal Shock Resistance, points 18
4.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
96.6 to 99
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0.050 to 0.2
Iron (Fe), % 13 to 17
0 to 0.7
Manganese (Mn), % 0 to 0.030
1.0 to 1.5
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0 to 0.6
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15