MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 6014 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 6014 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
9.1 to 17
Fatigue Strength, MPa 200
43 to 79
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 440
96 to 150
Tensile Strength: Ultimate (UTS), MPa 660
160 to 260
Tensile Strength: Yield (Proof), MPa 270
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1020
180
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1430
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
200
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
53
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
180

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.4
8.6
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 290
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
22
Resilience: Unit (Modulus of Resilience), kJ/m3 180
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
16 to 26
Strength to Weight: Bending, points 20
24 to 33
Thermal Diffusivity, mm2/s 2.7
83
Thermal Shock Resistance, points 18
7.0 to 11

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0 to 0.2
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0 to 0.25
Iron (Fe), % 13 to 17
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 0.030
0.050 to 0.2
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0.3 to 0.6
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 1.5 to 4.0
0
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15