MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 6101B Aluminum

Nickel 30 belongs to the nickel alloys classification, while 6101B aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 6101B aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
9.1 to 13
Fatigue Strength, MPa 200
62 to 70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 440
120 to 150
Tensile Strength: Ultimate (UTS), MPa 660
190 to 250
Tensile Strength: Yield (Proof), MPa 270
140 to 180

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1020
160
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1430
630
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
210
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
57
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
190

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.4
8.3
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 290
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
20 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 180
140 to 240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
20 to 25
Strength to Weight: Bending, points 20
27 to 32
Thermal Diffusivity, mm2/s 2.7
87
Thermal Shock Resistance, points 18
8.5 to 11

Alloy Composition

Aluminum (Al), % 0
98.2 to 99.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0 to 0.050
Iron (Fe), % 13 to 17
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0 to 0.030
0 to 0.050
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0.3 to 0.6
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1