MakeItFrom.com
Menu (ESC)

Nickel 30 vs. C15100 Copper

Nickel 30 belongs to the nickel alloys classification, while C15100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is C15100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
2.0 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 82
43
Shear Strength, MPa 440
170 to 270
Tensile Strength: Ultimate (UTS), MPa 660
260 to 470
Tensile Strength: Yield (Proof), MPa 270
69 to 460

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1020
200
Melting Completion (Liquidus), °C 1480
1100
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
360
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
95
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
95

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.5
9.0
Embodied Carbon, kg CO2/kg material 9.4
2.7
Embodied Energy, MJ/kg 130
43
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
9.3 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 180
21 to 890
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
8.1 to 15
Strength to Weight: Bending, points 20
10 to 15
Thermal Diffusivity, mm2/s 2.7
100
Thermal Shock Resistance, points 18
9.3 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
99.8 to 99.95
Iron (Fe), % 13 to 17
0
Manganese (Mn), % 0 to 0.030
0
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Zirconium (Zr), % 0
0.050 to 0.15
Residuals, % 0
0 to 0.1