MakeItFrom.com
Menu (ESC)

Nickel 30 vs. C61900 Bronze

Nickel 30 belongs to the nickel alloys classification, while C61900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is C61900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
21 to 32
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 82
43
Shear Strength, MPa 440
370 to 410
Tensile Strength: Ultimate (UTS), MPa 660
570 to 650
Tensile Strength: Yield (Proof), MPa 270
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1020
220
Melting Completion (Liquidus), °C 1480
1050
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 450
440
Thermal Conductivity, W/m-K 10
79
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 60
28
Density, g/cm3 8.5
8.3
Embodied Carbon, kg CO2/kg material 9.4
3.1
Embodied Energy, MJ/kg 130
51
Embodied Water, L/kg 290
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
230 to 430
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 22
19 to 22
Strength to Weight: Bending, points 20
18 to 20
Thermal Diffusivity, mm2/s 2.7
22
Thermal Shock Resistance, points 18
20 to 23

Alloy Composition

Aluminum (Al), % 0
8.5 to 10
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
83.6 to 88.5
Iron (Fe), % 13 to 17
3.0 to 4.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.030
0
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.6
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.5