MakeItFrom.com
Menu (ESC)

Nickel 30 vs. K93050 Alloy

Nickel 30 belongs to the nickel alloys classification, while K93050 alloy belongs to the iron alloys. They have 52% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 82
72
Tensile Strength: Ultimate (UTS), MPa 660
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Melting Completion (Liquidus), °C 1480
1430
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 450
460
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
26
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 9.4
4.7
Embodied Energy, MJ/kg 130
65
Embodied Water, L/kg 290
120

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
23
Strength to Weight: Axial, points 22
17 to 23
Strength to Weight: Bending, points 20
17 to 21
Thermal Shock Resistance, points 18
16 to 21

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 28 to 31.5
0 to 0.25
Cobalt (Co), % 0 to 5.0
0 to 0.5
Copper (Cu), % 1.0 to 2.4
0
Iron (Fe), % 13 to 17
61.4 to 63.9
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
36
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 0 to 0.8
0 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.020
Tungsten (W), % 1.5 to 4.0
0