MakeItFrom.com
Menu (ESC)

Nickel 601 vs. AWS ERTi-1

Nickel 601 belongs to the nickel alloys classification, while AWS ERTi-1 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 601 and the bottom bar is AWS ERTi-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 10 to 38
24
Fatigue Strength, MPa 220 to 380
120
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 660 to 890
240
Tensile Strength: Yield (Proof), MPa 290 to 800
170

Thermal Properties

Latent Heat of Fusion, J/g 320
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1410
1670
Melting Onset (Solidus), °C 1360
1620
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 11
21
Thermal Expansion, µm/m-K 14
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 49
37
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 8.0
31
Embodied Energy, MJ/kg 110
510
Embodied Water, L/kg 280
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 200
52
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 1630
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 22 to 30
15
Strength to Weight: Bending, points 20 to 25
19
Thermal Diffusivity, mm2/s 2.8
8.7
Thermal Shock Resistance, points 17 to 23
19

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 7.7 to 20
0 to 0.080
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 58 to 63
0
Nitrogen (N), % 0
0 to 0.012
Oxygen (O), % 0
0.030 to 0.1
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
99.773 to 99.97