MakeItFrom.com
Menu (ESC)

Nickel 693 vs. C19200 Copper

Nickel 693 belongs to the nickel alloys classification, while C19200 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
2.0 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 440
190 to 300
Tensile Strength: Ultimate (UTS), MPa 660
280 to 530
Tensile Strength: Yield (Proof), MPa 310
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1350
1080
Melting Onset (Solidus), °C 1310
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 9.1
240
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 9.9
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 250
42 to 1120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
8.8 to 17
Strength to Weight: Bending, points 21
11 to 16
Thermal Diffusivity, mm2/s 2.3
69
Thermal Shock Resistance, points 19
10 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
98.5 to 99.19
Iron (Fe), % 2.5 to 6.0
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0.010 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2