MakeItFrom.com
Menu (ESC)

Nickel 80A vs. AISI 414 Stainless Steel

Nickel 80A belongs to the nickel alloys classification, while AISI 414 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is AISI 414 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
17
Fatigue Strength, MPa 430
430 to 480
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 660
550 to 590
Tensile Strength: Ultimate (UTS), MPa 1040
900 to 960
Tensile Strength: Yield (Proof), MPa 710
700 to 790

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 980
750
Melting Completion (Liquidus), °C 1360
1440
Melting Onset (Solidus), °C 1310
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 11
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 55
8.0
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 9.8
2.1
Embodied Energy, MJ/kg 140
29
Embodied Water, L/kg 280
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
1260 to 1590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 35
32 to 34
Strength to Weight: Bending, points 27
27 to 28
Thermal Diffusivity, mm2/s 2.9
6.7
Thermal Shock Resistance, points 31
33 to 35

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0
Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 18 to 21
11.5 to 13.5
Iron (Fe), % 0 to 3.0
81.8 to 87.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 69.4 to 79.7
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 1.8 to 2.7
0