MakeItFrom.com
Menu (ESC)

H01 C19500 Copper vs. H01 C65100 Bronze

Both H01 C19500 copper and H01 C65100 bronze are copper alloys. Both are furnished in the H01 (quarter hard) temper. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is H01 C19500 copper and the bottom bar is H01 C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 23
25
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 71
56
Shear Modulus, GPa 44
43
Shear Strength, MPa 290
210
Tensile Strength: Ultimate (UTS), MPa 460
330
Tensile Strength: Yield (Proof), MPa 360
200

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1060
Melting Onset (Solidus), °C 1090
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 200
57
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
12
Electrical Conductivity: Equal Weight (Specific), % IACS 51
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
70
Resilience: Unit (Modulus of Resilience), kJ/m3 550
170
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 14
10
Strength to Weight: Bending, points 15
12
Thermal Diffusivity, mm2/s 58
16
Thermal Shock Resistance, points 16
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.020
0
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
94.5 to 99.2
Iron (Fe), % 1.0 to 2.0
0 to 0.8
Lead (Pb), % 0 to 0.020
0 to 0.050
Manganese (Mn), % 0
0 to 0.7
Phosphorus (P), % 0.010 to 0.35
0
Silicon (Si), % 0
0.8 to 2.0
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
0 to 1.5
Residuals, % 0 to 0.2
0 to 0.5