MakeItFrom.com
Menu (ESC)

H01 C70600 Copper-nickel vs. H01 C72800 Copper-nickel

Both H01 C70600 copper-nickel and H01 C72800 copper-nickel are copper alloys. Both are furnished in the H01 (quarter hard) temper. They have a moderately high 92% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is H01 C70600 copper-nickel and the bottom bar is H01 C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 65
89
Shear Modulus, GPa 46
44
Tensile Strength: Ultimate (UTS), MPa 410
610

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1150
1080
Melting Onset (Solidus), °C 1100
920
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 44
55
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
11
Electrical Conductivity: Equal Weight (Specific), % IACS 9.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 33
38
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 3.4
4.4
Embodied Energy, MJ/kg 51
68
Embodied Water, L/kg 300
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.5 to 160
78
Resilience: Unit (Modulus of Resilience), kJ/m3 16 to 290
1170
Stiffness to Weight: Axial, points 7.7
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 13
19
Strength to Weight: Bending, points 14
18
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 14
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Copper (Cu), % 84.7 to 90
78.3 to 82.8
Iron (Fe), % 1.0 to 1.8
0 to 0.5
Lead (Pb), % 0 to 0.050
0 to 0.0050
Magnesium (Mg), % 0
0.0050 to 0.15
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Nickel (Ni), % 9.0 to 11
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Zinc (Zn), % 0 to 1.0
0 to 1.0
Residuals, % 0 to 0.5
0 to 0.3