MakeItFrom.com
Menu (ESC)

SAE-AISI 1065 Steel vs. EN 1.4736 Stainless Steel

Both SAE-AISI 1065 steel and EN 1.4736 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1065 steel and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 230
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 14
28
Fatigue Strength, MPa 270 to 340
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Shear Strength, MPa 430 to 470
370
Tensile Strength: Ultimate (UTS), MPa 710 to 780
580
Tensile Strength: Yield (Proof), MPa 430 to 550
310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 51
21
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.0
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 19
35
Embodied Water, L/kg 46
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 90
140
Resilience: Unit (Modulus of Resilience), kJ/m3 490 to 820
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25 to 28
21
Strength to Weight: Bending, points 23 to 24
20
Thermal Diffusivity, mm2/s 14
5.6
Thermal Shock Resistance, points 25 to 27
21

Alloy Composition

Aluminum (Al), % 0
1.7 to 2.1
Carbon (C), % 0.6 to 0.7
0 to 0.040
Chromium (Cr), % 0
17 to 18
Iron (Fe), % 98.3 to 98.8
77 to 81.1
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8