MakeItFrom.com
Menu (ESC)

SAE-AISI 1524 Steel vs. AWS E90C-B9

Both SAE-AISI 1524 steel and AWS E90C-B9 are iron alloys. They have 88% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1524 steel and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14 to 22
18
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 570 to 650
710
Tensile Strength: Yield (Proof), MPa 320 to 540
460

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
25
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.3
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.5
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
37
Embodied Water, L/kg 48
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 760
550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20 to 23
25
Strength to Weight: Bending, points 19 to 21
23
Thermal Diffusivity, mm2/s 14
6.9
Thermal Shock Resistance, points 18 to 21
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0.19 to 0.25
0.080 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 98 to 98.5
84.4 to 90.9
Manganese (Mn), % 1.4 to 1.7
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.015
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5