MakeItFrom.com
Menu (ESC)

SAE-AISI 1552 Steel vs. AWS E70C-Ni2

Both SAE-AISI 1552 steel and AWS E70C-Ni2 are iron alloys. They have a very high 97% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1552 steel and the bottom bar is AWS E70C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 14
27
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
72
Tensile Strength: Ultimate (UTS), MPa 760 to 840
560
Tensile Strength: Yield (Proof), MPa 460 to 650
450

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
52
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
3.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 19
22
Embodied Water, L/kg 47
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 98
140
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1130
540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 27 to 30
20
Strength to Weight: Bending, points 24 to 25
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 26 to 29
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.47 to 0.55
0 to 0.080
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 97.9 to 98.3
94.1 to 98.3
Manganese (Mn), % 1.2 to 1.5
0 to 1.3
Nickel (Ni), % 0
1.8 to 2.8
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0 to 0.050
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5