MakeItFrom.com
Menu (ESC)

SAE-AISI 4718 Steel vs. EN 1.4021 Stainless Steel

Both SAE-AISI 4718 steel and EN 1.4021 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4718 steel and the bottom bar is EN 1.4021 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
11 to 17
Fatigue Strength, MPa 270
240 to 380
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 330
390 to 530
Tensile Strength: Ultimate (UTS), MPa 510
630 to 880
Tensile Strength: Yield (Proof), MPa 370
390 to 670

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 420
760
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
30
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
7.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.6
1.9
Embodied Energy, MJ/kg 21
27
Embodied Water, L/kg 51
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 360
400 to 1160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
23 to 31
Strength to Weight: Bending, points 18
21 to 26
Thermal Diffusivity, mm2/s 10
8.1
Thermal Shock Resistance, points 17
22 to 31

Alloy Composition

Carbon (C), % 0.16 to 0.21
0.16 to 0.25
Chromium (Cr), % 0.35 to 0.55
12 to 14
Iron (Fe), % 96.3 to 97.4
83.2 to 87.8
Manganese (Mn), % 0.7 to 0.9
0 to 1.5
Molybdenum (Mo), % 0.3 to 0.4
0
Nickel (Ni), % 0.9 to 1.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015