MakeItFrom.com
Menu (ESC)

SAE-AISI 5140 Steel vs. EN 1.8864 Steel

Both SAE-AISI 5140 steel and EN 1.8864 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5140 steel and the bottom bar is EN 1.8864 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 290
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 29
22
Fatigue Strength, MPa 220 to 570
320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 360 to 600
380
Tensile Strength: Ultimate (UTS), MPa 560 to 970
610
Tensile Strength: Yield (Proof), MPa 290 to 840
460

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 45
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 19
22
Embodied Water, L/kg 49
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1880
550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20 to 34
22
Strength to Weight: Bending, points 19 to 28
20
Thermal Diffusivity, mm2/s 12
10
Thermal Shock Resistance, points 16 to 29
18

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.38 to 0.43
0 to 0.18
Chromium (Cr), % 0.7 to 0.9
0 to 0.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.3 to 98.1
95.1 to 100
Manganese (Mn), % 0.7 to 0.9
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.050