MakeItFrom.com
Menu (ESC)

SAE-AISI 9255 Steel vs. C12600 Copper

SAE-AISI 9255 steel belongs to the iron alloys classification, while C12600 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9255 steel and the bottom bar is C12600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
56
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
56
Shear Strength, MPa 430
190
Tensile Strength: Ultimate (UTS), MPa 680
270
Tensile Strength: Yield (Proof), MPa 390
69

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 46
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
29
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
30
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 1.5
2.6
Embodied Energy, MJ/kg 20
41
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 400
21
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
8.2
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 13
39
Thermal Shock Resistance, points 21
9.5

Alloy Composition

Carbon (C), % 0.51 to 0.59
0
Copper (Cu), % 0
99.5 to 99.8
Iron (Fe), % 96.2 to 97
0
Manganese (Mn), % 0.7 to 1.0
0
Phosphorus (P), % 0 to 0.035
0.2 to 0.4
Silicon (Si), % 1.8 to 2.2
0
Sulfur (S), % 0 to 0.040
0