MakeItFrom.com
Menu (ESC)

SAE-AISI 9310 Steel vs. C95400 Bronze

SAE-AISI 9310 steel belongs to the iron alloys classification, while C95400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9310 steel and the bottom bar is C95400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 540 to 610
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 19
8.1 to 16
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 820 to 910
600 to 710
Tensile Strength: Yield (Proof), MPa 450 to 570
240 to 360

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 440
230
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 48
59
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 4.4
27
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.8
3.2
Embodied Energy, MJ/kg 24
53
Embodied Water, L/kg 57
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 150
48 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 860
250 to 560
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 29 to 32
20 to 24
Strength to Weight: Bending, points 25 to 27
19 to 22
Thermal Diffusivity, mm2/s 13
16
Thermal Shock Resistance, points 24 to 27
21 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0.080 to 0.13
0
Chromium (Cr), % 1.0 to 1.4
0
Copper (Cu), % 0
83 to 87
Iron (Fe), % 93.8 to 95.2
3.0 to 5.0
Manganese (Mn), % 0.45 to 0.65
0 to 0.5
Molybdenum (Mo), % 0.080 to 0.15
0
Nickel (Ni), % 3.0 to 3.5
0 to 1.5
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0.2 to 0.35
0
Sulfur (S), % 0 to 0.012
0
Residuals, % 0
0 to 0.5