MakeItFrom.com
Menu (ESC)

SAE-AISI D2 Steel vs. ASTM A369 Grade FP92

Both SAE-AISI D2 steel and ASTM A369 grade FP92 are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI D2 steel and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 5.0 to 16
19
Fatigue Strength, MPa 310 to 860
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 460 to 1160
440
Tensile Strength: Ultimate (UTS), MPa 760 to 2000
710
Tensile Strength: Yield (Proof), MPa 470 to 1510
490

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Melting Completion (Liquidus), °C 1440
1490
Melting Onset (Solidus), °C 1390
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 31
26
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.3
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
10

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
11
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 50
40
Embodied Water, L/kg 100
89

Common Calculations

PREN (Pitting Resistance) 15
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 5940
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27 to 72
25
Strength to Weight: Bending, points 24 to 46
22
Thermal Diffusivity, mm2/s 8.3
6.9
Thermal Shock Resistance, points 25 to 67
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 1.4 to 1.6
0.070 to 0.13
Chromium (Cr), % 11 to 13
8.5 to 9.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 81.3 to 86.9
85.8 to 89.1
Manganese (Mn), % 0 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0.7 to 1.2
0.3 to 0.6
Nickel (Ni), % 0 to 0.3
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0 to 1.1
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010