MakeItFrom.com
Menu (ESC)

SAE-AISI D2 Steel vs. C66900 Brass

SAE-AISI D2 steel belongs to the iron alloys classification, while C66900 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI D2 steel and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.0 to 16
1.1 to 26
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
45
Shear Strength, MPa 460 to 1160
290 to 440
Tensile Strength: Ultimate (UTS), MPa 760 to 2000
460 to 770
Tensile Strength: Yield (Proof), MPa 470 to 1510
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Melting Completion (Liquidus), °C 1440
860
Melting Onset (Solidus), °C 1390
850
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.3
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
23
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 50
46
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 100
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 5940
460 to 2450
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27 to 72
15 to 26
Strength to Weight: Bending, points 24 to 46
16 to 23
Thermal Shock Resistance, points 25 to 67
14 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 1.4 to 1.6
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 0 to 0.25
62.5 to 64.5
Iron (Fe), % 81.3 to 86.9
0 to 0.25
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.6
11.5 to 12.5
Molybdenum (Mo), % 0.7 to 1.2
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 1.1
0
Zinc (Zn), % 0
22.5 to 26
Residuals, % 0
0 to 0.2