MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. AWS E409Nb

Titanium 4-4-2 belongs to the titanium alloys classification, while AWS E409Nb belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 10
23
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
500
Tensile Strength: Yield (Proof), MPa 1030 to 1080
380

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 6.7
25
Thermal Expansion, µm/m-K 8.6
14

Otherwise Unclassified Properties

Base Metal Price, % relative 39
13
Density, g/cm3 4.7
7.8
Embodied Carbon, kg CO2/kg material 30
2.9
Embodied Energy, MJ/kg 480
42
Embodied Water, L/kg 180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 68 to 74
18
Strength to Weight: Bending, points 52 to 55
18
Thermal Diffusivity, mm2/s 2.6
6.8
Thermal Shock Resistance, points 86 to 93
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 0
11 to 14
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
80.2 to 88.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 3.0 to 5.0
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Residuals, % 0 to 0.4
0