MakeItFrom.com
Menu (ESC)

Titanium 6-2-4-2 vs. C95500 Bronze

Titanium 6-2-4-2 belongs to the titanium alloys classification, while C95500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-2-4-2 and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.6
8.4 to 10
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 950
700 to 850
Tensile Strength: Yield (Proof), MPa 880
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 300
230
Melting Completion (Liquidus), °C 1590
1050
Melting Onset (Solidus), °C 1540
1040
Specific Heat Capacity, J/kg-K 540
450
Thermal Conductivity, W/m-K 6.9
42
Thermal Expansion, µm/m-K 9.5
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 0.9
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 42
28
Density, g/cm3 4.6
8.2
Embodied Carbon, kg CO2/kg material 32
3.5
Embodied Energy, MJ/kg 520
57
Embodied Water, L/kg 210
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
58 to 61
Resilience: Unit (Modulus of Resilience), kJ/m3 3640
420 to 950
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 34
20
Strength to Weight: Axial, points 57
24 to 29
Strength to Weight: Bending, points 46
21 to 24
Thermal Diffusivity, mm2/s 2.8
11
Thermal Shock Resistance, points 67
24 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
10 to 11.5
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0
78 to 84
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
3.0 to 5.0
Manganese (Mn), % 0
0 to 3.5
Molybdenum (Mo), % 1.8 to 2.2
0
Nickel (Ni), % 0
3.0 to 5.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.15
0
Silicon (Si), % 0.060 to 0.12
0
Tin (Sn), % 1.8 to 2.2
0
Titanium (Ti), % 83.7 to 87.2
0
Zirconium (Zr), % 3.6 to 4.4
0
Residuals, % 0 to 0.4
0 to 0.5