MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. AISI 414 Stainless Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while AISI 414 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is AISI 414 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 6.7
17
Fatigue Strength, MPa 530
430 to 480
Poisson's Ratio 0.32
0.28
Reduction in Area, % 23
50
Shear Modulus, GPa 40
76
Shear Strength, MPa 630
550 to 590
Tensile Strength: Ultimate (UTS), MPa 1080
900 to 960
Tensile Strength: Yield (Proof), MPa 990
700 to 790

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 300
750
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 4.2
25
Thermal Expansion, µm/m-K 9.4
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 41
8.0
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
2.1
Embodied Energy, MJ/kg 540
29
Embodied Water, L/kg 180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
1260 to 1590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
32 to 34
Strength to Weight: Bending, points 52
27 to 28
Thermal Diffusivity, mm2/s 1.7
6.7
Thermal Shock Resistance, points 79
33 to 35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
81.8 to 87.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0.25 to 0.75
0
Nickel (Ni), % 0
1.3 to 2.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0