MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. C19200 Copper

Titanium 6-5-0.5 belongs to the titanium alloys classification, while C19200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 6.7
2.0 to 35
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Shear Strength, MPa 630
190 to 300
Tensile Strength: Ultimate (UTS), MPa 1080
280 to 530
Tensile Strength: Yield (Proof), MPa 990
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 300
200
Melting Completion (Liquidus), °C 1610
1080
Melting Onset (Solidus), °C 1560
1080
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 4.2
240
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 41
30
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 33
2.6
Embodied Energy, MJ/kg 540
41
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
42 to 1120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 67
8.8 to 17
Strength to Weight: Bending, points 52
11 to 16
Thermal Diffusivity, mm2/s 1.7
69
Thermal Shock Resistance, points 79
10 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
98.5 to 99.19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Molybdenum (Mo), % 0.25 to 0.75
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0.010 to 0.040
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 85.6 to 90.1
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0 to 0.2