MakeItFrom.com
Menu (ESC)

C11400 Copper vs. ASTM A182 Grade F122

C11400 copper belongs to the copper alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C11400 copper and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.8 to 51
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 150 to 210
450
Tensile Strength: Ultimate (UTS), MPa 220 to 400
710
Tensile Strength: Yield (Proof), MPa 75 to 400
450

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
600
Melting Completion (Liquidus), °C 1080
1490
Melting Onset (Solidus), °C 1030
1440
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
24
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
10
Electrical Conductivity: Equal Weight (Specific), % IACS 100
12

Otherwise Unclassified Properties

Base Metal Price, % relative 32
12
Density, g/cm3 9.0
8.0
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 350
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
140
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
520
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 12
25
Strength to Weight: Bending, points 9.1 to 14
22
Thermal Diffusivity, mm2/s 110
6.4
Thermal Shock Resistance, points 7.8 to 14
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 99.84 to 99.966
0.3 to 1.7
Iron (Fe), % 0
81.3 to 87.7
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.1
0