MakeItFrom.com
Menu (ESC)

C12200 Copper vs. EN 1.4008 Stainless Steel

C12200 copper belongs to the copper alloys classification, while EN 1.4008 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C12200 copper and the bottom bar is EN 1.4008 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.2 to 50
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 220 to 410
670
Tensile Strength: Yield (Proof), MPa 69 to 400
500

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
760
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 340
25
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 85
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
8.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.1
Embodied Energy, MJ/kg 41
30
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 91
100
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 690
630
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.9 to 13
24
Strength to Weight: Bending, points 9.1 to 14
22
Thermal Diffusivity, mm2/s 98
6.7
Thermal Shock Resistance, points 7.9 to 15
23

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 99.9 to 99.985
0
Iron (Fe), % 0
81.8 to 86.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.5
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0.015 to 0.040
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.025