MakeItFrom.com
Menu (ESC)

C12600 Copper vs. C65500 Bronze

Both C12600 copper and C65500 bronze are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C12600 copper and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 56
4.0 to 70
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 56
43
Shear Strength, MPa 190
260 to 440
Tensile Strength: Ultimate (UTS), MPa 270
360 to 760
Tensile Strength: Yield (Proof), MPa 69
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1030
970
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 130
36
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
42
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 21
62 to 790
Stiffness to Weight: Axial, points 7.2
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.2
12 to 24
Strength to Weight: Bending, points 10
13 to 21
Thermal Diffusivity, mm2/s 39
10
Thermal Shock Resistance, points 9.5
12 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Copper (Cu), % 99.5 to 99.8
91.5 to 96.7
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0.5 to 1.3
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0.2 to 0.4
0
Silicon (Si), % 0
2.8 to 3.8
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5