MakeItFrom.com
Menu (ESC)

C14520 Copper vs. EN 1.4565 Stainless Steel

C14520 copper belongs to the copper alloys classification, while EN 1.4565 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is EN 1.4565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 9.0 to 9.6
35
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Shear Strength, MPa 170 to 190
590
Tensile Strength: Ultimate (UTS), MPa 290 to 330
880
Tensile Strength: Yield (Proof), MPa 230 to 250
480

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 85
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 33
28
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
5.4
Embodied Energy, MJ/kg 42
74
Embodied Water, L/kg 310
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
260
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
550
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
31
Strength to Weight: Bending, points 11 to 12
26
Thermal Diffusivity, mm2/s 94
3.2
Thermal Shock Resistance, points 10 to 12
21

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
41.2 to 50.7
Manganese (Mn), % 0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 19
Niobium (Nb), % 0
0 to 0.15
Nitrogen (N), % 0
0.3 to 0.6
Phosphorus (P), % 0.0040 to 0.020
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tellurium (Te), % 0.4 to 0.7
0