MakeItFrom.com
Menu (ESC)

C14520 Copper vs. EN 1.4828 Stainless Steel

C14520 copper belongs to the copper alloys classification, while EN 1.4828 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is EN 1.4828 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.0 to 9.6
33
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 190
430
Tensile Strength: Ultimate (UTS), MPa 290 to 330
650
Tensile Strength: Yield (Proof), MPa 230 to 250
260

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1050
1360
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 320
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 85
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
17
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
48
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
170
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
23
Strength to Weight: Bending, points 11 to 12
22
Thermal Diffusivity, mm2/s 94
4.0
Thermal Shock Resistance, points 10 to 12
14

Alloy Composition

Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
61.1 to 68.5
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
11 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0.0040 to 0.020
0 to 0.045
Silicon (Si), % 0
1.5 to 2.5
Sulfur (S), % 0
0 to 0.015
Tellurium (Te), % 0.4 to 0.7
0