MakeItFrom.com
Menu (ESC)

C14700 Copper vs. EN 1.4981 Stainless Steel

C14700 copper belongs to the copper alloys classification, while EN 1.4981 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14700 copper and the bottom bar is EN 1.4981 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.1 to 35
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 160 to 190
420
Tensile Strength: Ultimate (UTS), MPa 240 to 320
610
Tensile Strength: Yield (Proof), MPa 85 to 250
240

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 370
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
25
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 41
67
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 65
190
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 280
150
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.3 to 10
21
Strength to Weight: Bending, points 9.5 to 12
20
Thermal Diffusivity, mm2/s 110
4.3
Thermal Shock Resistance, points 8.4 to 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 99.395 to 99.798
0
Iron (Fe), % 0
59.6 to 66.7
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0.0020 to 0.0050
0 to 0.035
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0.2 to 0.5
0 to 0.015
Residuals, % 0 to 0.1
0