MakeItFrom.com
Menu (ESC)

C15100 Copper vs. Grade 31 Titanium

C15100 copper belongs to the copper alloys classification, while grade 31 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is grade 31 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0 to 36
20
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
41
Shear Strength, MPa 170 to 270
320
Tensile Strength: Ultimate (UTS), MPa 260 to 470
510
Tensile Strength: Yield (Proof), MPa 69 to 460
450

Thermal Properties

Latent Heat of Fusion, J/g 210
420
Maximum Temperature: Mechanical, °C 200
320
Melting Completion (Liquidus), °C 1100
1660
Melting Onset (Solidus), °C 1030
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 360
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
6.9

Otherwise Unclassified Properties

Density, g/cm3 9.0
4.5
Embodied Carbon, kg CO2/kg material 2.7
36
Embodied Energy, MJ/kg 43
600
Embodied Water, L/kg 310
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
99
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
940
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.1 to 15
32
Strength to Weight: Bending, points 10 to 15
32
Thermal Diffusivity, mm2/s 100
8.5
Thermal Shock Resistance, points 9.3 to 17
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Cobalt (Co), % 0
0.2 to 0.8
Copper (Cu), % 99.8 to 99.95
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.040 to 0.080
Titanium (Ti), % 0
97.9 to 99.76
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0 to 0.4