MakeItFrom.com
Menu (ESC)

C17000 Copper vs. AWS ER120S-1

C17000 copper belongs to the copper alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.1 to 31
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
930
Tensile Strength: Yield (Proof), MPa 160 to 1140
830

Thermal Properties

Latent Heat of Fusion, J/g 230
260
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 22
9.0

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.9
Embodied Energy, MJ/kg 140
25
Embodied Water, L/kg 310
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
150
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
1850
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 41
33
Strength to Weight: Bending, points 16 to 30
27
Thermal Diffusivity, mm2/s 32
13
Thermal Shock Resistance, points 17 to 45
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0 to 0.1
Beryllium (Be), % 1.6 to 1.8
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 96.3 to 98.2
0 to 0.25
Iron (Fe), % 0 to 0.4
92.4 to 96.1
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0.2 to 0.6
2.0 to 2.8
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5