MakeItFrom.com
Menu (ESC)

C17500 Copper vs. S44537 Stainless Steel

C17500 copper belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 30
21
Fatigue Strength, MPa 170 to 310
230
Poisson's Ratio 0.34
0.27
Rockwell B Hardness 38 to 99
80
Shear Modulus, GPa 45
79
Shear Strength, MPa 200 to 520
320
Tensile Strength: Ultimate (UTS), MPa 310 to 860
510
Tensile Strength: Yield (Proof), MPa 170 to 760
360

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
1000
Melting Completion (Liquidus), °C 1060
1480
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 60
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.7
3.4
Embodied Energy, MJ/kg 73
50
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
95
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
320
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
18
Strength to Weight: Bending, points 11 to 23
18
Thermal Diffusivity, mm2/s 59
5.6
Thermal Shock Resistance, points 11 to 29
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0 to 0.1
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0 to 0.5
Iron (Fe), % 0 to 0.1
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Residuals, % 0 to 0.5
0