MakeItFrom.com
Menu (ESC)

C18700 Copper vs. ACI-ASTM CB7Cu-2 Steel

C18700 copper belongs to the copper alloys classification, while ACI-ASTM CB7Cu-2 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is ACI-ASTM CB7Cu-2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 9.6
5.7 to 11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 290 to 330
960 to 1350
Tensile Strength: Yield (Proof), MPa 230 to 250
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 950
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 380
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
38
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
1510 to 3600
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
34 to 48
Strength to Weight: Bending, points 11 to 12
28 to 35
Thermal Diffusivity, mm2/s 110
4.6
Thermal Shock Resistance, points 10 to 12
32 to 45

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 98 to 99.2
2.5 to 3.2
Iron (Fe), % 0
73.6 to 79
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0
4.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0