MakeItFrom.com
Menu (ESC)

C18700 Copper vs. EN 1.7362 Steel

C18700 copper belongs to the copper alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 9.6
21 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 170 to 190
320 to 370
Tensile Strength: Ultimate (UTS), MPa 290 to 330
510 to 600
Tensile Strength: Yield (Proof), MPa 230 to 250
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
510
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 950
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 380
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
4.5
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 41
23
Embodied Water, L/kg 310
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
100 to 340
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
18 to 21
Strength to Weight: Bending, points 11 to 12
18 to 20
Thermal Diffusivity, mm2/s 110
11
Thermal Shock Resistance, points 10 to 12
14 to 17

Alloy Composition

Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 98 to 99.2
0 to 0.3
Iron (Fe), % 0
91.5 to 95.2
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Residuals, % 0 to 0.5
0