MakeItFrom.com
Menu (ESC)

C18700 Copper vs. EN 1.8503 Steel

C18700 copper belongs to the copper alloys classification, while EN 1.8503 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is EN 1.8503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 9.6
16
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 170 to 190
610
Tensile Strength: Ultimate (UTS), MPa 290 to 330
1000
Tensile Strength: Yield (Proof), MPa 230 to 250
910

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
440
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 950
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 380
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
3.3
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.3
Embodied Energy, MJ/kg 41
33
Embodied Water, L/kg 310
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
150
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
2200
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
35
Strength to Weight: Bending, points 11 to 12
28
Thermal Diffusivity, mm2/s 110
11
Thermal Shock Resistance, points 10 to 12
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.3
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
95.8 to 97.5
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.65 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Vanadium (V), % 0
0.25 to 0.35
Residuals, % 0 to 0.5
0