MakeItFrom.com
Menu (ESC)

C18700 Copper vs. Nickel 890

C18700 copper belongs to the copper alloys classification, while nickel 890 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 9.6
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 170 to 190
400
Tensile Strength: Ultimate (UTS), MPa 290 to 330
590
Tensile Strength: Yield (Proof), MPa 230 to 250
230

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1080
1390
Melting Onset (Solidus), °C 950
1340
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 30
47
Density, g/cm3 9.0
8.1
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 41
120
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
180
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
140
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
20
Strength to Weight: Bending, points 11 to 12
19
Thermal Shock Resistance, points 10 to 12
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 98 to 99.2
0 to 0.75
Iron (Fe), % 0
17.3 to 33.9
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6
Residuals, % 0 to 0.5
0