MakeItFrom.com
Menu (ESC)

C18700 Copper vs. S21640 Stainless Steel

C18700 copper belongs to the copper alloys classification, while S21640 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 9.6
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 170 to 190
520
Tensile Strength: Ultimate (UTS), MPa 290 to 330
740
Tensile Strength: Yield (Proof), MPa 230 to 250
350

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 950
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 380
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
17
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
280
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
300
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
27
Strength to Weight: Bending, points 11 to 12
23
Thermal Diffusivity, mm2/s 110
4.0
Thermal Shock Resistance, points 10 to 12
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
63 to 74.3
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 0
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0