MakeItFrom.com
Menu (ESC)

C18700 Copper vs. S30452 Stainless Steel

C18700 copper belongs to the copper alloys classification, while S30452 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is S30452 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 9.6
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 190
440
Tensile Strength: Ultimate (UTS), MPa 290 to 330
660
Tensile Strength: Yield (Proof), MPa 230 to 250
310

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 950
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 380
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
15
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 41
43
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
180
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
250
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
23
Strength to Weight: Bending, points 11 to 12
22
Thermal Diffusivity, mm2/s 110
4.2
Thermal Shock Resistance, points 10 to 12
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
66.3 to 73.8
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10.5
Nitrogen (N), % 0
0.16 to 0.3
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0