MakeItFrom.com
Menu (ESC)

C19010 Copper vs. EN 2.4668 Nickel

C19010 copper belongs to the copper alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19010 copper and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 22
14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
75
Shear Strength, MPa 210 to 360
840
Tensile Strength: Ultimate (UTS), MPa 330 to 640
1390
Tensile Strength: Yield (Proof), MPa 260 to 620
1160

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1010
1410
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 260
13
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
75
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 42
190
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
180
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
3490
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 10 to 20
46
Strength to Weight: Bending, points 12 to 18
33
Thermal Diffusivity, mm2/s 75
3.5
Thermal Shock Resistance, points 12 to 23
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 97.3 to 99.04
0 to 0.3
Iron (Fe), % 0
11.2 to 24.6
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0.8 to 1.8
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0.010 to 0.050
0 to 0.015
Silicon (Si), % 0.15 to 0.35
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.6 to 1.2
Residuals, % 0 to 0.5
0