MakeItFrom.com
Menu (ESC)

C19010 Copper vs. Grade 23 Titanium

C19010 copper belongs to the copper alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19010 copper and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.4 to 22
6.7 to 11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Shear Strength, MPa 210 to 360
540 to 570
Tensile Strength: Ultimate (UTS), MPa 330 to 640
930 to 940
Tensile Strength: Yield (Proof), MPa 260 to 620
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
340
Melting Completion (Liquidus), °C 1060
1610
Melting Onset (Solidus), °C 1010
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 260
7.1
Thermal Expansion, µm/m-K 17
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 63
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 48 to 63
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 8.9
4.4
Embodied Carbon, kg CO2/kg material 2.7
38
Embodied Energy, MJ/kg 42
610
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3 to 140
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 1680
3430 to 3560
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 10 to 20
58 to 59
Strength to Weight: Bending, points 12 to 18
48
Thermal Diffusivity, mm2/s 75
2.9
Thermal Shock Resistance, points 12 to 23
67 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 97.3 to 99.04
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0
0 to 0.25
Nickel (Ni), % 0.8 to 1.8
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0.010 to 0.050
0
Silicon (Si), % 0.15 to 0.35
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0 to 0.5
0 to 0.4