MakeItFrom.com
Menu (ESC)

C19100 Copper vs. S32506 Stainless Steel

C19100 copper belongs to the copper alloys classification, while S32506 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19100 copper and the bottom bar is S32506 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17 to 37
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
81
Shear Strength, MPa 170 to 330
440
Tensile Strength: Ultimate (UTS), MPa 250 to 630
710
Tensile Strength: Yield (Proof), MPa 75 to 550
500

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 56
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 43
54
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60 to 99
130
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 1310
620
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7 to 20
25
Strength to Weight: Bending, points 9.9 to 18
23
Thermal Diffusivity, mm2/s 73
4.3
Thermal Shock Resistance, points 8.9 to 22
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 96.5 to 98.6
0
Iron (Fe), % 0 to 0.2
60.8 to 67.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0.9 to 1.3
5.5 to 7.2
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0.15 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.015
Tellurium (Te), % 0.35 to 0.6
0
Tungsten (W), % 0
0.050 to 0.3
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0